A MODEL FOR DISTRIBUTED COMPUTING

Venkatesh Vinayakarao

venkateshv@cmi.ac.in http://vvtesh.co.in

Chennai Mathematical Institute

Data is the new oil. - Clive Humby, 2006.

Venkatesh Vinayakarao (Vv)

A Distributed Computing Model

No shared memory. No notion of global clock.

How to co-ordinate to get a job done?

Space-time diagram of a distributed execution

Causal dependency $e \in \{internal, send, receive\}$ e_{1}^{3} e_{1}^{4} p_1 e_{2}^{4} m_{21} e_2^2 e_2^1 p_2 e_{3}^{2} e_{3}^{5} e_{3}^{3} p_3 e_{4}^{2} p_4 time Concurrent events

A Message through a

channel from an

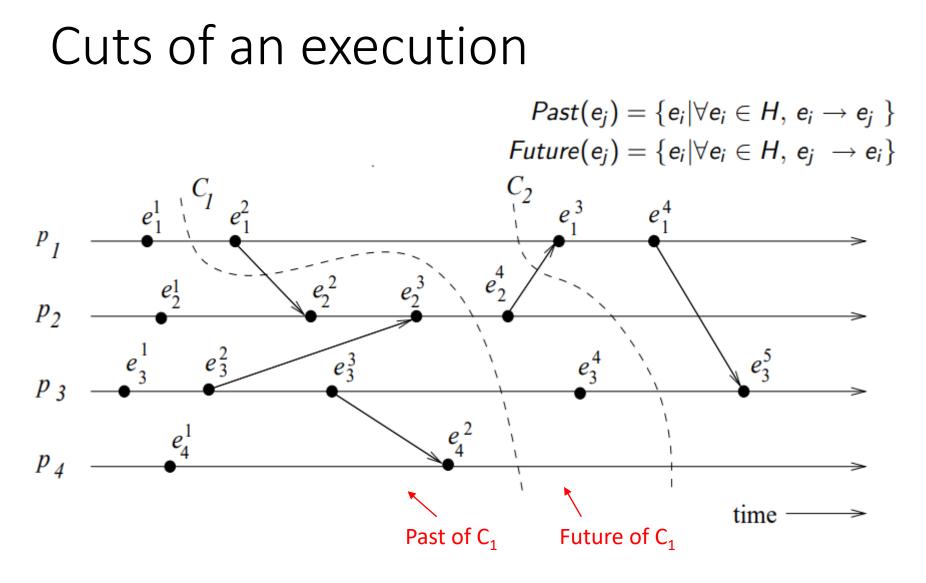
event causes

A Distributed Execution

Causal dependencies between events

$$\forall e_i^x, \ \forall e_j^y \in H, \ e_i^x \rightarrow e_j^y \quad \Leftrightarrow \quad \begin{cases} e_i^x \rightarrow_i e_j^y \quad i.e., (i = j) \land (x < y) \\ or \\ e_i^x \rightarrow_{msg} e_j^y \\ or \\ \exists e_k^z \in H : e_i^x \rightarrow e_k^z \land e_k^z \rightarrow e_j^y \end{cases}$$

 $H=\cup_i h_i$ denotes set of all events of process p_i $e_1^1 \rightarrow e_3^3$ and $e_3^3 \rightarrow e_2^6$ denotes a causal dependency from the figure. $\mathcal{H}=(H, \rightarrow)$ denotes causal precedence relation



Note that C₁ is **inconsistent**. C₂ is **consistent**. Can you see why?

Local and Global States

$$GS = \{\bigcup_{i} LS_{i}^{x_{i}}, \bigcup_{j,k} SC_{jk}^{y_{j},z_{k}} \}$$
Local State Channel State

 $SC_{ij}^{x,y} = \{m_{ij} | send(m_{ij}) \leq e_i^x \land rec(m_{ij}) \not\leq e_j^y\}$

Thus, channel state $SC_{ij}^{x,y}$ denotes all messages that p_i sent upto event e_i^x and which process p_j had not received until event e_i^y .

Synchrony

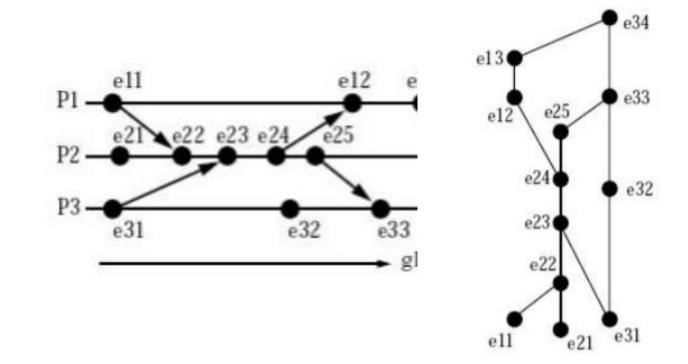
- Synchronous communication model
 - On message *send*, the sender process blocks until the message has been *received*.
- Asynchronous
 - Non-blocking type.

How to track causality without the notion of global time?

Let us define a local logical clock

 $C: H \mapsto T$ \leftarrow T is a timestamp $e_i \rightarrow e_j \Longrightarrow C(e_i) < C(e_j)$

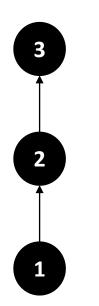
Processes with Local Clocks



Virtual Time and Global States of Distributed Systems, Friedemann Mattern.

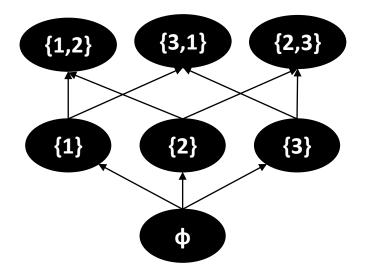
Total Vs. Partial Order

The Pair ({1,2,3}, <)



A strict total order.

The Pair ({{},{1},{2},{3},{1,2},{1,3},{2,3}}, \subseteq)



Partially ordered under the ⊆ operation!

Reflexive, Transitive and Anti-symmetric a<=a a<=b and b<=c a<=b and b<=a implies a <= c implies a = b

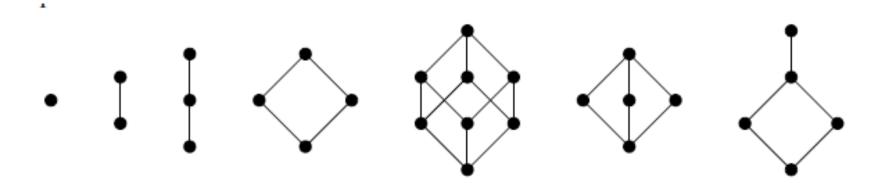
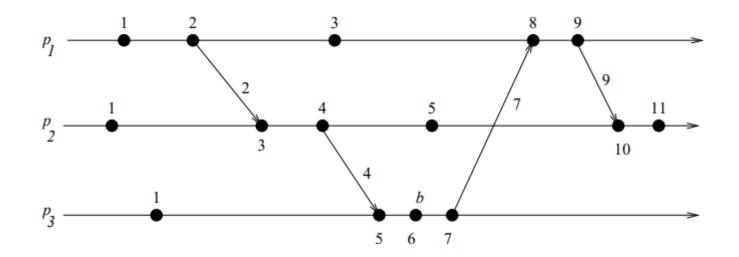
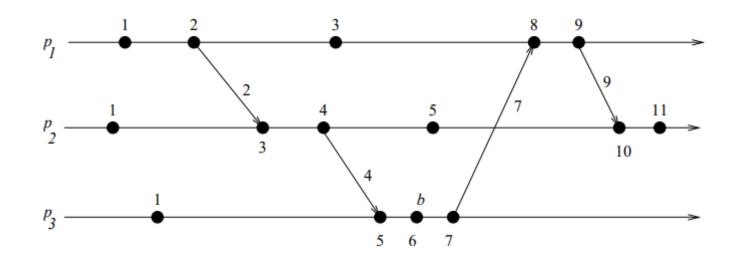


Image source: Static Program Analysis, Moller and Schwartzbach

Scalar Time

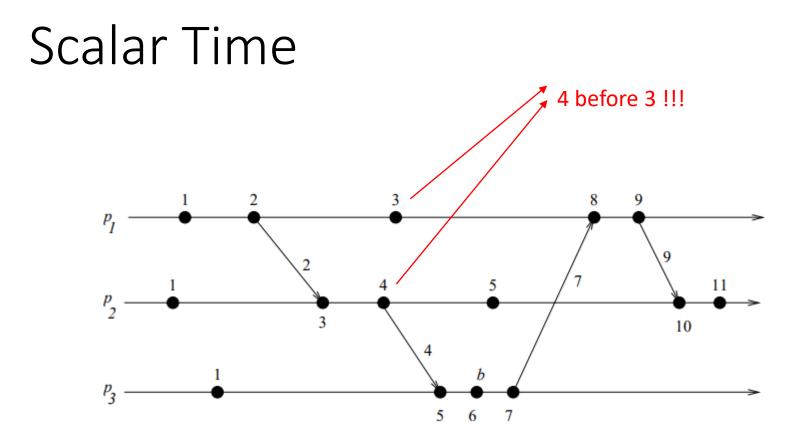


Scalar Time



$$C(e_i) < C(e_j) \not\Longrightarrow e_i \rightarrow e_j$$

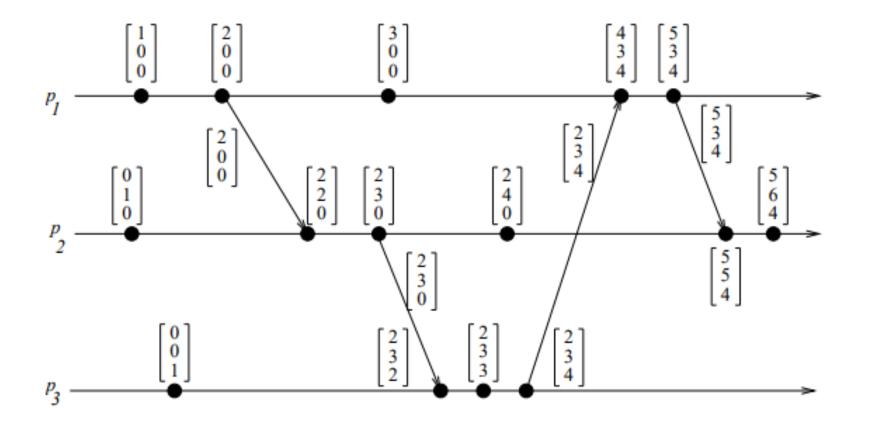
Not strongly consistent



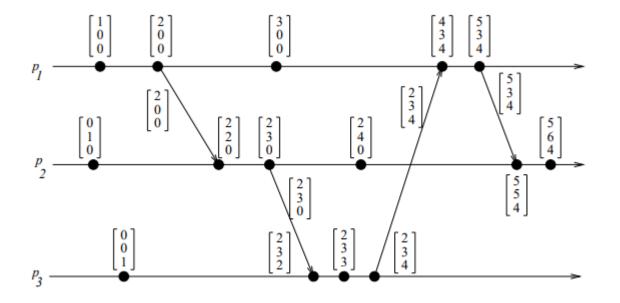
$$C(e_i) < C(e_j) \not\Longrightarrow e_i \rightarrow e_j$$

Not strongly consistent

Vector Time



Vector Time

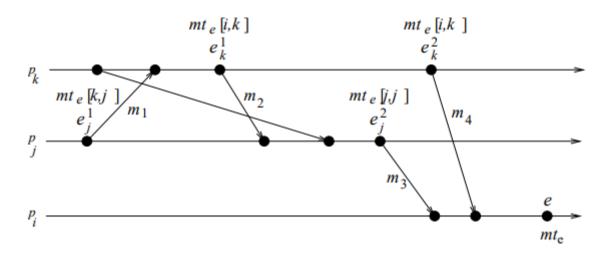


Implementing Vector Time? Notice that "between successive message sends to the same process, only a few entries of the vector clock at the sender process are likely to change".

Singhal-Kshemkalyani's differential technique uses this observation.

Matrix Time

The entire matrix mt_i denotes p_i 's local view of the global logical time.



In addition, matrix clocks have the following property: $\min_k(mt_i[k, l]) \ge t \Rightarrow \text{ process } p_i \text{ knows that every other process } p_k \text{ knows that } p_l$'s local time has progressed till t.

A Distributed Computing Algorithm

- Consensus Problem
 - All processes have an initial value
 - All non-faulty processes must agree on the same (single) value.

A Distributed Computing Algorithm

- Consensus Problem
 - All processes have an initial value.
 - All non-faulty processes must agree on the same (single) value.
 - Setting: Message-Passing, Synchronous.

```
(global constants)
integer: f;
                                          // maximum number of crash failures tolerated
(local variables)
integer: x \leftarrow local value;
(1) Process P_i (1 \le i \le n) executes the Consensus algorithm for up to f crash failures:
(1a) for round from 1 to f + 1 do
(1b)
         if the current value of x has not been broadcast then
(1c)
                broadcast(x);
      y_i \leftarrow value (if any) received from process j in this round;
(1d)
         x \leftarrow min(x, y_i);
(1e)
(1f) output x as the consensus value.
```