
Venkatesh Vinayakarao (Vv)

RDBMS and SQL

Physical View and Indexing

Venkatesh Vinayakarao
venkateshv@cmi.ac.in

http://vvtesh.co.in

Chennai Mathematical Institute

{ƭƛŘŜ ŎƻƴǘŜƴǘǎ ŀǊŜ ōƻǊǊƻǿŜŘ ŦǊƻƳ ǘƘŜ ŎƻǳǊǎŜ ǘŜȄǘΦ CƻǊ ǘƘŜ ŀǳǘƘƻǊǎΩ ƻǊƛƎƛƴŀƭ ǾŜǊǎƛƻƴ ƻŦ ǎƭƛŘŜǎΣ ǾƛǎƛǘΥ
https://www.db-book.com/db6/slide-dir/index.html.

mailto:venkatesh.v@iiits.in
http://vvtesh.co.in/
https://www.db-book.com/db6/slide-dir/index.html

{ǘƻǊȅ {ƻ CŀǊΧ
1 2

3

Relational Algebra
SQL

You are
here!

File Organization

DB

file 1 file 2 file nΧ

Data stored as files.
Files are managed by the

underlying OS.

Files

ÅA file is a sequence of blocks.

ÅBlocksare fixed-length units of both storage
allocation and data transfer.

182

file i

Block 1

Block 2

Χ

Records

ÅA blockmay contain several records.

ÅEach record is entirely contained in a single block.

183

Block i

Record 1

Record 2

Χ

Record n

File Organization

184

DB

DB is stored as
a set of files.

no record is larger than a block

Approch1: Fixed-Length Records

185

Quiz

ÅAssume each char takes 1 byte and numeric(8,2)
type take 8 bytes of physical storage. Say, block size
in our file system is 1 KB. If there are 20 records in
our relation, how many block accesses will we need
to retrieve all of them?

186

Quiz

ÅAssume each char takes 1 byte and numeric(8,2)
type take 8 bytes of physical storage. Say, block size
in our file system is 1 KB. If there are 20 records in
our relation, how many block accesses will we need
to retrieve all of them?
ÅRecord length = 53 bytes

ÅTotal no. of records = 20

ÅSpace required = 53 * 20 = 1060 bytes

ÅBlock size = 1024 bytes.

ÅWe need two block accesses to retrieve all records.

187

Issues

ÅDeletion
ÅCauses gaps inside blocks.

ÅSpace optimization
Åblock size may not be a multiple of record length
Åspace wasted in blocks.

188

Space Usage

189

Record

Ptr to 2nd

deleted record

Χ

Record

Block

File

Record

Record

Χ

Record

Block

Record

Record

Χ

Record

Block

Χ

File Header
Pointer to first deleted record

5ŜƭŜǘŜŘ ǊŜŎƻǊŘǎ ŦƻǊƳ ŀ ƭƛƴƪŜŘ ƭƛǎǘ ŎŀƭƭŜŘ ǘƘŜ άfree listέΦ

Free List

190

Free list
1 Ą 4 Ą 6

Variable Length Record

191

Metadata about the variable length data
is stored (in fixed length part)

Read 10 bytes from 36th byte for this field

Storage Organization of Records

ÅHeap file organization
ÅPlace any record anywhere in the file.

ÅSingle file for each relation.

ÅSequential file organization
ÅRecords are stored in sequential order (of key).

ÅHashing file organization
ÅHash (some attribute of) records to blocks.

192

Indexing

193

Motivation

ÅWe usually access only a small part of the DB.

DB
Find the instructors in the
physics department

Need additional structures to access data
efficiently

Basic Concepts

ÅIndexing mechanisms used to speed up access to desired
data.
ÅE.g., author catalog in library

ÅSearch Key- Set of attributes used to look up records in a
file.

ÅAn index fileconsists of records (called index entries) of the
form

ÅIndex files are typically much smaller than the original file

ÅTwo basic kinds of indices:
ÅOrdered indices: search keys are stored in sorted order
ÅHash indices:search keys are distributed uniformly across
άōǳŎƪŜǘǎέ ǳǎƛƴƎ ŀ άƘŀǎƘ ŦǳƴŎǘƛƻƴέΦ

search-key pointer

Ordered Indices

ÅIn an ordered index, index entries are stored sortedon
the search key value. E.g., author catalog in library.

ÅPrimary index: in a sequentially ordered file, the index
whose search key specifies the sequential order of the
file.
ÅThe search key of a primary index is usually but not

necessarily the primary key.

ÅSecondary index: an index whose search key specifies
an order different from the sequential order of the file.

ÅIndex-sequential file: ordered sequential file with a
primary index.

Dense Index Files

ÅDense indexτ Index record appears for every search-key value in the
file.

ÅE.g. index on IDattribute of instructorrelation

Dense Index Files (Cont.)

ÅDense index on dept_name, with instructor file sorted on dept_name

Sparse Index Files

ÅSparse Index: contains index records for only some search-key values.
ÅApplicable when records are sequentially ordered on search-key

ÅTo locate a record with search-key value Kwe:
ÅFind index record with largest search-key value < K

ÅSearch file sequentially starting at the record to which the index record
points

Secondary Indices Example

ÅIndex record points to a bucket that contains pointers to all the actual
records with that particular search-key value.

ÅSecondary indices have to be dense

Secondary index on salary field of instructor

Multilevel Index

ÅIf primary index does
not fit in memory,
access becomes
expensive.

