BDH Class Notes - Web Services

venkatesh V
venakteshv@cmi.ac.in

March 2020

1 Introduction

Having discussed the advances in data storage and computation, we now turn
our attention to building useful big data applications. Towards this purpose,
it is insufficient to understand how to manage big data as we have learned so
far using distributed computing platforms such as Hadoop HDFS, programming
models such as map-reduce, and data stores such as NoSQL. The missing piece
is about handling interoperability of applications and distributed systems. We
leverage the advances in the area of web technologies to build services that
expose application features built over heterogeneous distributed systems. In
this article, we discuss the design and implementation of web services.

2 Interoperability of Distributed Sytems

Different distributed systems present interesting challenges of interoperability.
The systems may be heterogeneous by nature. The heterogeneity might be
driven not only by the nature of computing systems and programming lan-
guages/scripts/models used but also the data representations used within each
system. For example, let us say, we would like to use both the google maps func-
tionality and Facebook’s face recognition technology. In an ideal world, both
these companies expose their features as ”services” that any developer may use
in building his own application. In the present era, our applications depend on
large and complex heterogeneous distributed systems.

3 A Brief Survey of Interoperability Solutions

We may consider file passing as a simple means of communication between
two distributed systems. However, this has several limitations. For instance,
we need to design common file formats and semantics of serializing the data
into a file. Moreover, the encryption, compression, encoding and transmission
of the file are concerns that every system developer needs to solve. Hence,
a middleware platform will be very useful from separations of concerns and a

reuse perspective. By separation of concerns, we mean the application developer
can worry about the application details without worrying about the ”big data”
management details. The ”big data” related features can be transferred to the
middleware community.

Instead of transferring files, transferring objects would solve the impedance
mismatch problem. Thus, passing objects will only be more natural for client-
server communication. Some technologies use remote procedure calls. In other
words, they invoke methods on a remote object. Another architectural decision
passes "messages”.

Object Management Group’s (OMG) Common Object Broker Architecture
(CORBA) is an open standards based solution proposed to meet this objective.
CORBA is a standards-based, vendor neutral and language agnostic solution for
interoperability. A server makes objects available for clients to use through a
middleware layer named Object Request Broker (ORB). Client requests for an
object (served by the server) through the ORB API. The ORB API supplies the
object instance after communicating and obtaining that instance from the server
often over a network. Notice that ORBs make the sharing of objects seamless
and easy. Given the standard architectural specification, vendor-specific code
could be provided by the specific programming language community.

Soon, vendor specific implementations were out in the market. Microsoft
implemented DCOM. Sun Microsystems came up with RMI. In the early 2000’s,
DCOM and RMI were popular. The central idea remains the same across both
DCOM and RMI. The Remote Method Invocation (RMI) model used RMI
registry to advertise the services. First, the client “discovers” the service it
needs. Then, it directly talks to the RMI server to “invoke” that service which
is essentially a method call on an object. DCOM supports remote objects by
running on a protocol called Object Remote Procedure Call (ORPC). A DCOM
client calls the exposed methods of a DCOM server by acquiring a pointer to
one of the server object’s interfaces. In this course, we will not go any deeper
into OMG, DCOM or RMI. Instead, we focus on building web services which
has revolutionized the industry, of-late.

4 Web and its Disruptions

With the broad penetration of internet, it made sense to make method invoca-
tions over the web. This led to the idea of “web services”.

Early static web was developed in 1990 at European Organization for Nuclear
Research (CERN). NCSA Mosaic 1.0 was the first browser, released by the
National Center for Supercomputer Applications (NCSA). So, how does it work?
First, we need to write code in the Hyper Text Mark Up (HTML) language.
Then, we move it to a machine which has a software module named web server
running on it. Web servers wait for client requests, usually sent as Hyper Text
Transfer Protocol (HTTP) requests. In return, the server sends the HTML back
to the client. The client then renders the HTML on the screen.

Static web pages were extremely limiting our abilities to implement online

transactions, maintain sessions, remember data over sessions and so on. This
called for a more powerful technology which could render HTML output dynam-
ically (i.e., programmatically). Apache Httpd 1.0 web server allowed Common
Gateway Interface (CGI) which enabled the dynamic web. Microsoft proposed
Active Server Pages (ASP). The details of coding with CGI or ASP is beyond
the scope of this course. However, I encourage you to spend few minutes looking
at some sample ASP and CGI scripts.

A web server’s responsibility is to receive requests for web pages and serve
them. Soon, technologies evolved to do more complex server-side processing.
Full-stack applications could be coded on the server end. Such servers came to
be known as Application Servers (also called App Servers). The technologies
in this space went through a churn from being together in a single module
to an architecture where a web server still receives web requests and forwards
them to another app server which in-turn may work with several other app
servers to complete the task. Needless to mention that availability of cloud
data stores greatly improved our ability to solve bigger and more interesting
business problems.

5 Web Services

A “service” is a software component provided through an (often, network-
accessible) endpoint. Service consumer and provider use messages to exchange
invocation request and response information in the form of self-containing docu-
ments. A Web service is an application that exposes certain application features
(services) over the web. They are used for application-to-application integra-
tion.

A Web Resource is a named object that is accessible over the web. Uni-
form Resource Identifiers (URI), are used to identify them. A web page is
an example of a web resource. An Uniform Resource Locator (URL), say
http://www.google.com locates the webpage. In the context of web pages, URLs
and URIs are used interchangeably. This is because, in this context, a resource
is identified by its location. However, unique ids such as ISBN strings of books
may serve as URIs.

5.1 Application Interoperability with Web Services

Let us assume that we need to create an application where we need to show
meanings of words. We do not need to re-implement a dictionary. Instead,
we may just use an existing dictionary. Oxford Dictionary offers a web ser-
vice through which we can easily access word senses. The URL https://od-
api.oxforddictionaries.com/api/v2/entries/en-us/ubiquitous returns a Javascript
Object Notation (JSON) document containing the definitions. Part of the re-
sponse containing the definition is shown below.

{

"definitions": [
"present, appearing, or found everywhere"]

You may use these service to build your own applications.

5.2 REST API

The example of Oxford Dictionary discussed above is an example of REST API.
Representational State Transfer (REST) was proposed by Roy Fielding in the
year 2000. The central idea is to identify resources, and then use a representation
of the resource that can be transferred over the web.

Each word is seen as a web resource that is represented using JSON format
where we capture all data elements describing the term such as the definitions,
usage and synonyms.

We use Hypertext Transfer Protocol (HTTP) methods to transfer the re-
sponse. By default, when nothing is specified, we assume the HTTP Get
method is invoked when we access the URL. In this document, we use the
notation HTTP GET /ubiquitous to represent the firing of URL http://od-
api.oxforddictionaries.com/api/v2/entries/en-us/ubiquitous over the web. The
server returns the JSON response as a result.

REST allows the Create/Retrieve/Update/Delete (CRUD) operations through
the HTTP methods. The HTTP Get method is mapped to the retrieval action.
Instead, if you intend to create a new resource, you perform HTTP Post and
send the representation of the resource along with the post request. For in-
stance, HTTP POST /ubiquitous would create a new instance of the resource
on the server. HTTP Put is used to update a resource. If you wish to add a
new usage of the term ubiquitous, you would create a new representation which
contains the update and submit as a HTTP Put request. Similarly, you may use
HTTP Delete to remove the resource from the server. Thus you could manage
the states of the resource through transferring its representation.

An idempotent HT'TP method is an HT'TP method that can be called many
times without different outcomes. Notice that Get, Put and Delete are idem-
potent. Irrespective of how many ever times you invoke these methods, you
get the same response from the server. Invoking Post multiple times might
(not necessarily, depends on application design) create multiple instances of the
resource.

To understand this better, refer to the example discussed at the restfu-
lapi.net!. In our word sense case, ubiquitous is a singleton. However, in reality,
we could have different requirements. The example at this website discusses cre-
ating several devices and configurations through REST service. HTTP POST
/devices creates a new device. HTTP GET /devices/id will retrieve it.

A HTTP response code is also sent along with each response. For instance,
a 500 error code means that there was some internal server error while serving
the request. In fact, all 5xx errors indicate server failures. Similarly, 4xx errors

Thttps://restfulapi.net /rest-api-design-tutorial-with-example/

indicate that the request was not well formed. For more details on HTTP
response codes, refer restfulapi.net?.

6 Designing REST API

There are four major steps in the designing of REST APIs:
e Identify the object model
e Create Model URIs
e Determine Representations

e Assign HTTP Methods

6.1 Identifying Object Model

Assuming that we are designing the REST API for an ecommerce application.
Say, we have several products to sell. These "Products” become a candidate for
resource. Similarly, we need to identify the other objects, say users, reviews,
etc. Coming with an object model is the subject of class diagram design in
UML.

6.2 Create Model URIs

Next, we are interested in creating the model URIs. HTTP GET /product/id

retrieves a product. To create a product, we do a HTTP Post /product. Remem-

ber, we submit an XML or a JSON representation of the resource along with the

post request. In our case, we need to design the representation and that is our

third step. Often, we include version numbers in our URL for maintenance rea-

sons. So, you will see URLSs such as https://od-api.oxforddictionaries.com/api/v2/entries/en-
us/ubiquitous. Since we are concerned about resources, the URIs always contain

nouns and never verbs.

6.3 Determine Representations

To create or update a resource, client sends the resource representation, usually
(not necessarily) in XML or JSON format. For a product, the representation
may contain details such as name, price, description and so on. Here is an
example:

<product xmlns:xs="http://www.w3.org/2001/XMLSchema">
<name type="xs:string">N95 Mask</name>
<price type="xs:int">100</price>
<description type="xs:string">
98% 3-layer filtration of pollution

2https:/ /restfulapi.net/http-status-codes/

particles PM2.5 997 filtration of
bacteria, tested by Nelson Laboratories
</description>
</product>

For a JSON example, refer the restfulapi website3.

6.4 Assign HTTP Methods

The last step is to assign the http methods for the resource actions. To add
products in the server, we use Post method. To update, we use Put and to
retrieve, we use Get method. Since our products are uniquely identified by name,
we could have a Get method such as HTTP GET /products/n95nelsonmask.
This URI could map to an URL http://mywebsite/products/n95nelsonmask.
On the other hand, if we model users as non-singleton, we will use HTTP GET
/users/id to retrieve a specific user resource. An interesting fact to notice here
is that the interaction between client and server is stateless. By stateless, we
mean that the server need not store any information at its end to use across
successive client requests. It is the client’s responsibility to send all the necessary
information along with each request. This design helps in keeping the server
design lean (demanding less memory) and simple.

6.5 Implementing REST API

Java™ API for RESTful Web Services (JAX-RS) delivers API for RESTful
Web Services development in Java SE and Java EE. JAX-RS is implemented
in Jersey. It provides all the required libraries to implement REST API. The
annotations based implementation simplifies the web services development. You
are encouraged to read the Jersey documentation® to learn web services imple-
mentation with Jersey.

7 REST API in the Real World

It is easy to spot REST api in the real world. They have in fact become a de-
facto standard for web services implementation. The developer tools in chrome
browser lets you inspect the URIs and responses. Figure 1 shows an example
from the google news website.

8 Summary

Interoperability of applications is central to the success of big data systems.
Web Services play a key role in language-neutral, vendor-neutral application

Shttps://restful-api-design.readthedocs.io/en /latest /resources.html
4https://eclipse-eedj.github.io/jersey.github.io/documentation /latest/getting-started.html

« C @& newsgooghe.com/hi=en-INGgl=IN&ceid=IN:en ® *x =@
<R A] Gements Cowole Sowces Network Perirmance Memory Applkation Secury Audits X
q ° 0 ¥ a Preseive bog Disable eache Online b4 + & -3

o viide dota URLs] XHR S5 CSS img Media Fomt Doc WS Manifest Other
Only show reguests with SameSite issues

= Google News

Headlines More Headines. 0w MOms 0w OOms m G00ms M BNGDms MO0 WEEOms 11000m
]

Yes Bank Rescue Plan "Bizarre”, Huge Loan

Spinal\w:d:Pchidnmharam v Headers Preview Fespomss Indistor Timing Cookies

NOTV News - 24 minies ago

apijs
+ Yes Bank crisis: Sitharaman blames stressed loans Im Request URL: https://play. google.com/logtformatajsonthasfaststruskauthuser =g
Chidambaram hits back s Request Method: posT

m=FCpbgb 0N WhiNk Ja Status Codes & 209

findka - Yesterday

« P Chidambaram says RBI's draft for Yes Bank is bizarre; asks how logMormat=jsanihastast=tn Remote Addrem 272.217.168. 1161413
nobody naticed big jump i loan book oo dotaki = 36T Refemrer Policy: origin
The Financi s - 28 minules ago N

| @ browsesinfoHsids 263133, _ | » Response Headsrs
&« (s
« Yes bank, no bank

scrmts-comteol sl comduntiste 1. 2

= Google News

® O ¥ Q0w ODsiblecache Onine v | £ &
Filt Fide dota URLs (] 0 15 €SS kg Media Fom Doc WS Manifenn Oter
Oy show nequests with Sanesite issoes

Headlines More Headlines |

P o s oo e v 120000 s rooen]|
-
Yes Bank Rescue Plan *Bizarre”, Huge Loan
Spike Allowed: P Chidambaram Home X Mesders Puevew Resporse Inidstor Timing Cookies
DTV Mews - 24 (ewtes 390 —
LT KFOMCOGEIZFTMAEKW. o | 1| [=. 1=, ul |, [[["ANDROTD_BACKLS™, 8], ["BATTERY_STATS™ 0], ["SHART_SETUS" 0], [“TRON" 0]
- Yes Bank crisis: Sitharaman blames stressed loans :H e
Chidambaram hits back s fiormete il b itato)
Times of India - Vesierday ch=gapiloaded 0
] me FCpbah OB WhINK,Ja
« P Chidambaram says RETs draft for Yes Bank is bizarre; asks how | togformat=jscmBhasfost=tru

nobody noticed big jump in loan book

Tha Financial Express - 22 minutes ago

bowserindodsid=-20313367.
© browserinfotsid=-283133.)
« Wes bank, no bank

66 roquests | 430 KB wansferred | Line 1, Column 1
The incen

s 3 - Binions

Figure 1: A snapshot of REST API usage in Google News.

interoperability. In this lecture, we discussed REST API for implementing web
services. They can be easily implemented using Jersey-like libraries.

