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ABSTRACT

Developers o�en ask for libraries that implement speci�cmathemat-

ical expressions. A fundamental bo�leneck in building information

retrieval (IR) systems to answer such mathematical queries is the

inability to detect a given expression in so�ware binaries. While we

have a few math IR solutions such as EgoMath2 and Tangent-3 that

work over text documents, none exist to search over so�ware bina-

ries. Our vision is to build a search system for binaries to answer

queries containing mathematical expressions. A wide variety of

compilers and di�erences in the way they optimize the code, pose

di�cult challenges to solve this problem. In this work, we discuss

our preliminary results in detecting mathematical expressions in

so�ware binaries. We use a knowledge base assisted approach to

solve this problem. We are able to search mathematical expressions

with a precision of 80% and a recall of 53%. �is work opens up

interesting research opportunities in areas such as so�ware secu-

rity and performance, to help analysts in identifying and analyzing

binaries for implementations of mathematical expressions.
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1 INTRODUCTION

With the growth of mathematical computations as essential build-

ing blocks of scienti�c, analytical and mission-critical applications,

use of math libraries such as Eigen [8] and Generic Math Template

Library [9] have become ubiquitous. As such, the need for a search

system that can fetch relevant libraries containing a given expres-

sion has become inevitable. We envision a system for searching

mathematical expressions in so�ware binaries. Mathematical ex-

pressions can be of di�erent types. In this work, we focus on queries

that are algebraic and transcendental expressions. Our system, as

shown in Figure 1, takes a mathematical expression, represented

using ContentML [4, 10] as input query and returns relevant bina-

ries that implement this expression. For brevity reasons, we use

ME in the rest of the paper to refer to mathematical expressions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’18, Gothenburg, Sweden

© 2018 ACM. 978-1-4503-5716-6/18/05. . . $15.00
DOI: 10.1145/3196398.3196413

Mathematical

Expression

✄

�✞✁☛
✂

✒☎✆☞✝✟

☛✠✟
Search 

System

.

Binaries

0110101

0110011

1100111

1010101

Math 

Strands KB

Figure 1: Overview of the search system.

A text search for “C++ Math Library” in StackOver�ow1 results

in 4K posts. Developers o�en search for libraries that implement

a certain mathematical expression. For example, a developer asks

for a C library that implements Fast Fourier Transform in�ora2.

We �nd 39K GitHub3 projects which use the term “math” in their

documentation. According to a study by Zhao et al. [23], users

o�en look for resources such as code or a toolkit with an imple-

mentation of a ME. Hence, a search system for ME in binaries

will be useful to developers. Such a search system can be used not

only at development time for code reuse, but also be used by other

stakeholders such as security analysts to locate vulnerabilities and

so�ware testers for bug detection.

Building such a search system is challenging due to several rea-

sons: 1) Not every arithmetic opcode in the binary corresponds to

the operator inME. 2) �e order in which the operands appear may

di�er between the binaries and theME. 3) Di�erence in optimiza-

tion levels and compilers may lead to di�erent but semantically

equivalent assembly forms. 4) Variables and structures in code are

reduced to registers and memory locations in assembly. 5) �ere

are multiple ways of representingME. 6) We have a wide variety

of operations such as algebraic and transcendental. We propose

a simple yet novel �ngerprinting approach to matchME with the

so�ware binaries.

Existing systems such as MathFind [17], Tangent-3 [22] and

EgoMath2 [16] focus on the retrieval of documents pertaining to

ME. In another work, Kamali and Tompa [12] also search forME in

documents. Current systems are limited to either searching in

textual sources over the web [12, 15, 18], or discussion forums, or

in tool documentation. To the best of our knowledge, this is the

�rst work to search forME in binaries.

1[Oct 2017] h�ps://stackover�ow.com/
2h�ps://www.quora.com/Are-there-any-libraries-in-C-to-implement-FFTs
3h�ps://github.com/
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Table 1: Expressions compiled with di�erent optimization

levels lead to di�erent instructions in binaries.

Strand O0 O2 Os

x 2 callq
<pow@plt>

mulsd %xmm0,%xmm0 mulsd %xmm0,%xmm0

x − y sub %eax,%edx sub 0x200af2(%rip),%eax sub 0x200af2(%rip),%eax
x
y idiv %ecx idivl 0x200af1(%rip),#

601180
idivl 0x200af1(%rip),#
601180

We compile 20 GitHub projects that contain one of theME using

three optimization levels, resulting in a total of 60 binaries for our

dataset. To index these projects, �rst, we disassemble the binaries.

Next, we create �ngerprints of the disassembled binaries using

our knowledge base. �ese �ngerprints are textual by nature and

hence can be indexed by a search engine. At query time, we extract

and compare the query �ngerprint with the binary �ngerprints

to compute a relevance score. �us, our system is able to match

expressions to binaries with a precision of 80% and recall of 53%.

�e key contributions of our work are:

(1) A search system to search forME in binaries.

(2) An approach to compare binaries andME.

(3) A knowledge base of math operators mapped to their im-

plementations in assembly opcodes.

Search in binaries is a less explored research area. While we focus

on ME, our work opens up exciting opportunities in a variety of

domains such as security, bug detection and binary clone detection

where semantic analysis on binaries plays a signi�cant role.

2 BACKGROUND AND TERMINOLOGY

In this Section, we provide the necessary background on dealing

withME in so�ware binaries and list the associated challenges.

2.1 Working with binaries

Variants. Programs compiled using di�erent compilers or with

di�erent optimization levels may result in dissimilar binaries. For

example, in Table 1, a program implementing x2 when compiled

without optimization, calls the pow function, with binary signature

<pow@plt>. Whereas, an optimized version usesmulsd to multiply

the number to itself. We refer these choices available to compilers

as Variants. �e instructions may di�er for di�erent compiler opti-

mization levels such as O0, O2 and Os (provided by GNU compiler

collection and implemented in gcc and g++).

Ghost Ops. Not all instances of arithmetic opcodes in a binary

provide insight aboutME. Common actions such as passing argu-

ments to a function on the stack and allocating memory make use

of arithmetic opcodes too. We call such arithmetic opcodes, that do

not have an explicit equivalent operator in source code, Ghost Ops.

Hence isolating arithmetic opcodes with an equivalent operator in

a mathematical expression is a challenge. For example, the presence

of the sub instruction at assembly level need not imply that there

exists a subtraction operation in the source code.

Evaluation Ordering. Compilation may result in a binary where

strands of the implemented expression may appear in any order.

For example, a compiler may evaluate a∗b+c/d as a∗b followed by

c/d or c/d followed by a ∗ b before �nally performing the addition

operation. Due to this, the order of operations in ME di�er from

those that surface in the binaries. Hence, to compute similarity, a

speci�c sequence of operations cannot be assumed. We refer to this

challenge as Evaluation Ordering.

Operand Resolution. Since all operations at the assembly level

are performed on registers or on values in memory, resolving the

operands to variables is not a straightforward task. We call this

challenge Operand Resolution. �e resolution of operands plays a

major role because if expressions were to be compared purely based

on structure, the expression b2 − 4ac would be equal to b2 − 4ab.

2.2 Working withME

Speci�cation of Expressions. Content MathML [14] (henceforth

referred to as ContentML) provides a standardized way to cap-

ture ME. Yet, mathematical operators may have distinct forms.

For example, x ∗ y, x × y and xy represent the same expression.

ContentML normalizes the representations, removing ambiguity.

Types of Operations. In this work, we focus on algebraic and tran-

scendental expressions. Algebraic expressions are those which can

be represented using only algebraic operations, which consists of

addition, subtraction, multiplication and division. Transcendental

expressions by contrast, are those expressions that cannot be repre-

sented by a �nite sequence of algebraic operations. �e operations

which make up transcendental expressions include exponential,

logarithm and trigonometric functions. �is is a challenge because

we need to consider all the diverse ways of representing these

operations and functions at the binary level. For example, in an

unoptimized version log is represented by <log@plt>, while in an

optimized version it may get replaced by some precomputed value.

3 APPROACH

Our approach to implement a search system is aimed at addressing

the challenges listed in Section 2. �e approach is illustrated in

Figure 2. It consists of the following components:

• Math Strands Knowledge Base

• Binary Fingerprint Generator

• Mathematical Expression Fingerprint Generator

• Fuzzy Match Scorer

We now describe these components, explain the design rationale,

and connect them to the challenges listed in Section 2 of dealing

with binaries and ME.

Math Strands Knowledge Base. A math strand is an individual

operator in ME. We assume that two expressions are equivalent

if they have the same structure. For instance, x + y + z is same as

a + b + c . Hence, we ignore the variables in ME. We de�ne the

structure of an expression as the sequence of operators arranged

according to their precedence in ME. We have chosen to use the

term strand instead of operators since some terms (such as ex )

are also of interest to us as they have direct implementations in

libraries and therefore, a unique identity in the binary. For example,

all programs that want to use the ex function use the exp() function
provided in standard math libraries that is uniquely represented

by <exp@plt> in binary. Figure 2 shows a few rows from the math

strands knowledge base.
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Figure 2: Our approach for searching binaries that implement a given mathematical expression.

�e knowledge base is a mapping of top-k operators used inME,

and their corresponding assembly equivalents. Since the assembly

equivalents for mathematical operators may be either a single in-

struction or a set of instructions or function calls to common math

libraries, we address the problem posed by the type of operations.

We refer to the top-k operators as operators of interest. We use the

NTCIR-11 Math-2 dataset [20], which consists of 592,443 math ex-

pressions in Presentation MathML [4] format, to identify the most

frequent operators. We use WIRIS4 web service to convert them

to ContentML, count the operators, and rank them by frequency.

ContentML has standard tags for representing mathematical oper-

ations and hence deals with the challenge presented by variants

in specifying ME. For each operator in the list thus created, we

manually list all possible assembly language equivalents that could

perform them. We call this mapping the Math Strands Knowledge

Base (Ms KB). For this work, we pick the 15 most frequent opera-

tors, spanning both algebraic and transcendental classes, from the

list of all operators found in NTCIR-11 dataset.

Binary Fingerprint Generator. To generate the binary �ngerprint,

we �rst disassemble the binary using the objdump tool from the

GNU binutils5. �e returned dump is segmented into function

de�nitions and sections. We leverage this to extract each function,

and generate a math �ngerprint for each of them by passing it

through a sieve constructed with the mapping from (Ms KB). �e

motivation for this is the assumption that an expression would

be implemented in a single function for modularity. We reverse

look-up each assembly instruction on theMs KB, and if found, we

add the strand corresponding to this instruction in Ms KB to an

output string, which we call the math �ngerprint of binary (Bfp).

�e output of the sieve is a binary �ngerprint representing the

concatenation of math strands.

Mathematical Expression Fingerprint Generator. We represent the

expression �ngerprint as a concatenation of math strands corre-

sponding to the mathematical operators inME, fromMs KB . We

parse the ContentML input query to retrieve the operators of interest

in their order of precedence in ME. �e order of evaluation of any

4h�p://www.wiris.com/editor/docs/content-MathML
5h�ps://www.gnu.org/so�ware/binutils/

two operations in an expression cannot be swapped, unless the op-

erations are independent of each other. �is implies the presence of

a partial order which, for preliminary analysis, is approximated by

ordering the operators according to precedence. We then create the

math �ngerprint by replacing the resulting sequence of operators

with the corresponding math strand from theMs KB. We call this

the mathematical expression �ngerprint (Mfp).

Fuzzy Match Scorer. Our �nal step involves comparing Bfp with

Mfp . �is is non-trivial due to two factors: Evaluation Ordering

and Ghost Ops. We employ the Longest Common Subsequence

(LCS) [1] matching algorithm where the shorter Mfp is expected

to be a subsequence of the Bfp (due to the presence of Ghost Ops).

To convert the LCS score to a binary result indicating the presence

or absence of the expression in the binary, we use a threshold σ .

�erefore, if LCS(Mfp , Bfp) > σ , we declare that the ME was found

in the binary and include it in the output set. To improve precision

we have to deal with ghost ops and length normalization. So, we

use two heuristics:

• Length Heuristic: If |Mfp | < α |Bfp |, we ignore the LCS score
and declare that theME was not found in the binary. �e

main purpose of this rule is to enhance the precision for

short ME.

• Relevance Heuristic: We count the number of strands (Irr(Bfp ,

Mfp)) in Bfp that are absent in Mfp . We drop the binary if

Irr(Bfp , Mfp) > β |Bfp |.

4 EVALUATION

4.1 Dataset Description

We need a dataset of binaries that contain at least one math expres-

sion each. Towards this purpose, we explore the GitHub projects,

for the ME listed in Table 2. We convert the ME to ContentML

using Visual Math Editor6 which is a publicly available editor.

Selection of Expressions. In this work, we focus on expressions

whose fundamental building blocks are generally available in the

in-built language features of high-level languages such as C, C++

and Java. We select fourME which are listed in Table 2.

6h�p://visualmatheditor.equatheque.net/
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Table 2: �e expressions and sample binaries that implement them which we use in our evaluation.

Name Expression Type Git Author/Repository Description

Heron’s Formula
√

s ∗ (s − a) ∗ (s − b) ∗ (s − c) Algebraic SchraJa/Shape Calculates area and perimeter

Sigmoid Function 1
1+e−x Transcendental WayneTran/nn Experiments with neural networks

Compound Interest Kn = K0 ∗ (1 + p
100 )n Algebraic Myerly/Interest Calculates all forms of interest

D1-Black-Scholes
log

S0
X +t (r−q+

σ 2

2 )
σ
√
t

Transcendental RyanKennedyio/black-

scholes-cpp

Exercise in Black-Scholes formula

for option pricing

Table 3: Precision, Recall and F1 Score for each expression.

ME Mf p Precision Recall F1 Score

Heron’s Formula − ∗ − ∗ −∗q 0.69 0.56 0.61
Sigmoid Function e+/ 1.00 0.54 0.70
Compound Interest /+ˆ* 0.50 0.62 0.56
D1-Black-Scholes /lˆ/+-*+q*/ 1.00 0.38 0.55

Average 0.80 0.53 0.61
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Figure 3: A threshold of 0.45 works best for this dataset.

Selection of Projects. We pick 20 projects from GitHub on dis-

parate domains such as Finance, Algebra and Machine Learning.

For each expression listed in Table 2, we pick �ve projects from

GitHub such that each project implements the expression of inter-

est. We choose libraries from multiple authors. While choosing

implementations of the corresponding expressions on GitHub, we

ensure that our methods are not biased towards a particular tool,

release or community.

4.2 Results

We use a dataset of 60 binaries corresponding to 5 implementations

for each of the expressions listed in Table 2. We compile them with

the optimization levels O0, O2 and Os. Table 3 gives the results of

our experiments. Here, Mfp shows the sequence of operators. For

brevity, we use q for square root, e for exponent and l for logarithm.

For each of these expressions and over the complete dataset of 60

binaries, we check if we retrieve the correct binary (precision) and

all the correct binaries (recall). We compare our results against

manually annotated ground truth for various values of threshold.

Figure 3 shows that the F1 score peaks for a threshold value, σ =

0.45. Further, we derive the parameters α and β empirically to

be 0.25 and 0.40 respectively. We �nd that our approach is able

to identify with an average precision of 80% and recall of 53%

(F1 = 61%) at a threshold value of σ = 0.45. �e evaluation ordering

of instructions accounts for a low value of recall.

5 RELATED WORK

�e work closest to ours is of Kamali and Tompa [12]. �ey present

aME search engine which represents the structure of mathematical

expressions as trees and matches based on tree edit distance. �is

approach does not work with binaries due to the challenges such

as Ghost Ops and Evaluation Ordering. Our approach is inspired by

the simplicity and e�ectiveness of the �ngerprinting approach as

demonstrated in the existing works [2, 3, 11] on binary analysis.

Decompiling binaries is not always an option for mainly three

reasons: 1) A decompiler may not exist [21] for the combination of

programming language, compiler version, optimization levels, and

OS architecture. 2) Decompilers do not always result in error-free

code which can be recompiled for dynamic analysis. Even static

analysis may not be possible in cases where type information is re-

quired. 3) Decompilers are not bug-free and we become dependent

on the correctness of the decompiler.

BinGo [5] is a binary search engine which works across architec-

tures and various compiler optimizations. It claims that relevance

is higher for optimized code (compared to O0 non-optimized level).

�ey have also modeled functions (not math, but code procedures)

in a structure agnostic way suitable for binary search. We leverage

these ideas in our work. �ere are several other binary search or

similarity systems [6, 7, 13, 19] tuned to various purposes. However,

none of them retrieve ME.

6 CONCLUSION AND FUTUREWORK

Mathematical expressions (ME) and binaries pose several hard prob-

lems such as types of operations and variants. To solve these prob-

lems, we use a data driven approach supported by a Math Strands

Knowledge Base (Ms KB). With a simple �ngerprinting based in-

dexing, we show that ME can be located in binaries with 61% F1
score for algebraic and transcendental expressions.

We envision automating the creation ofMs KB for multiple sys-

tem architectures. Apart from the classes of operations considered,

there are other classes of operations such as logical (&& for AND,

→ for implies), and relational (such as ≤). Summation (
∑

) and prod-

uct (
∏

) are examples of iterative operations that require applying

an expression over a range of values. Precision can be improved by

keeping track of the operands in the ME. We will address these in

our future work. Our work opens up a wide range of opportunities

to a�ack problems on searching domain speci�c (such as music,

medical and �nance) content in binaries. We �nd that knowledge

base assisted solution is promising to address such problems.
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[16] Jozef Mišutka and Leo Galamboš. 2011. System Description: EgoMath2 As a
Tool for Mathematical Searching on Wikipedia.Org. In Proceedings of the 18th
Calculemus and 10th International Conference on Intelligent ComputerMathematics
(MKM’11). Springer-Verlag, Berlin, Heidelberg, 307–309.

[17] Rajesh Munavalli and Robert Miner. 2006. Math�nd: a math-aware search engine.
In Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM, 735–735.

[18] Tam T. Nguyen, Kuiyu Chang, and Siu Cheung Hui. 2012. A Math-aware Search
Engine for Math �estion Answering System. In Proceedings of the 21st ACM
International Conference on Information and Knowledge Management (CIKM ’12).
724–733.

[19] Andreas Sæbjørnsen, Jeremiah Willcock, �omas Panas, Daniel �inlan, and
Zhendong Su. 2009. Detecting Code Clones in Binary Executables. In Proceedings
of the Eighteenth International Symposium on So�ware Testing and Analysis (ISSTA
’09). 117–128.

[20] Moritz Schubotz, Abdou Youssef, Volker Markl, and Howard S. Cohl. 2015. Chal-
lenges of Mathematical Information Retrievalin the NTCIR-11 Math Wikipedia
Task. In Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’15). 951–954.

[21] Katerina Troshina, Alexander Chernov, and Yegor Derevenets. 2009. C decom-
pilation: Is it possible. In Proceedings of International Workshop on Program
Understanding, Altai Mountains, Russia. 18–27.

[22] Richard Zanibbi, Kenny Davila, Andrew Kane, and Frank Wm. Tompa. 2016.
Multi-Stage Math Formula Search: Using Appearance-Based Similarity Metrics
at Scale. In Proceedings of the 39th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’16). 145–154.

[23] Jin Zhao, Min-Yen Kan, and Yin Leng �eng. 2008. Math information retrieval:
user requirements and prototype implementation. In Proceedings of the 8th
ACM/IEEE-CS joint conference on Digital libraries. ACM, 187–196.


